SIMD: CilkPlus and OpenMP

Kent Milfeld, Georg Zitzlsberger, Michael Klemm, Carlos Rosales

ISC15
The Road to Application Performance on Intel Xeon Phi
July 16, 2015

THE UNIVERSITY OF TEXAS AT AUSTIN

1TSS TEXAS ADVANCED COMPUTING CENTER

SIMD

Single Instruction Multiple Data (SIMD)
Data Registers
Intel Cilk Plus SIMD
Directive
Declaration
Examples
OpenMP SIMD
Directive
Declaration
SIMD loop
SIMD CilkPlus OpenMP SIMD mapping
Alignment & Elemental Functions
Alignment
Beyond Present Directives

TxRCC

SIMD

Single Instruction Multiple Data (SIMD)
Data Registers Playground
Intel Cilk Plus SIMD
Directive
Declaration
Examples
OpenMP SIMD
Directive
Declaration
SIMD loop
SIMD CilkPlus OpenMP SIMD mapping
Alignment & Elemental Functions
Alignment
Beyond Present Directives

TxRCC

What to consider about SIMD

« Know as Vectorization by scientific community.
« Speed Kills

— |t was the speed of microprocessors that killed the
Cray vector story in the 90’s.

— We a rediscovering how to use vectors.
— Microprocessor vectors were 2DP long for many
years.
 We live in a parallel universe

— It's not just about parallel SIMD, we also live in a
silky environment of thread tasks and MPI tasks.

TxRCC

What to make of this?

« SIMD registers are getting wider now, but there
are other factors to consider.

— Caches: Maybe non-coherent,
possible 9 layers of memory later

— Alignment: Avoid cache-to-register hickups
— Prefetching: MIC needs user intervention here

— Data Arrangement: A0S vs SoA, gather,
scatter, permutes

— Masking: Allows conditional execution— but
you get less bang for your buck.
— Striding: 1 is best

TxRCC

SIMD

Single Instruction Multiple Data (SIMD)

Evolution of SIMD Hardware

Data Registers

Instruction Set Overview, AVX
Intel Cilk Plus SIMD

Directive

Declaration

Examples
OpenMP SIMD

Directive

Declaration

SIMD loop
SIMD CilkPlus OpenMP SIMD mapping
Alignment & Elemental Functions
Alignment
Beyond Present Directives

TxRCC

Intel CilkPlus
* # pragma SIMD

— Force SIMD operation on loops
* Array Notation - data arranged appropriate for SIMD

alindex:count] start at index, end count-start-1
(also index:count:stride)

ali:n] = b[i-1:n]+b[i+1] (think single line SIMD, neap arrays)
(optimize away subarrays)

e[:] = 1[:] +9[:] (entire array, heap or stack)
r[:] = s[i[:]], r[i[:]=s]:] (gather, scatter)
func(a[:]) (scalar/simd-enabled=by element/SIMD)

If(5==a[:]) result[:]=0 (works with conditionals)
 SIMD Enabled Functions: element = vector function

TxRCC 7

SIMD pragma
— Instructs the compiler to create SIMD operations
for iterations of the loops.
— Reason for vectorization failure: too many
pointers, complicated indexing ... (ivdep is a hint)

Without pragma vec-report=2 was helpful:
remark #15541: outer loop was not auto-vectorized: consider using SIMD directive

void do2(double a[n][n], double b[n][n], int end){ ivdep and vector always
don’t work here.

for (inti=0 ; i<end ; i++) {
a[i][0] = (b[i][0] - b[i+1][0]);
a[i][1] = (b[i][1] - b[i+1][1]);

(Fortran code vectorizes)

SIMD Enabled Functions

 SIMDizable Functions:

double funl (double r, double s, double t);
double fun2 (double r, double s, double t);

void driver (double R[N], double S[N], double T[N]) {
for (int i=0; i<N; i++) {

A[i] = funl(R[i],S[1],TI[i]);
B[i] = fun2(R[i],S[i],T[i]);

SIMD Enabled Functions

« Can be invoked with scalar or vector arguments.

* Use array notation with SIMD version (optimized
for vector width)

double funl (double r, double s, double t);
double fun2 (double r, double s, double t);

/l Function is for an element operation;
// but in parallel context (CilkPlus) provides an array for a vector version.

void driver (double R[N], double S[N], double T[N]) {
Al:] funl (R[:],S[:],T[:1):
B[:] fun2(R[:],S[:],T[:])~

TxRCC L

SIMD Enabled Functions

* Vector attribute/declspec decorations generate
scalar and SIMD version with:

Syntax:

___attribute__ ((vector (clauses))) function declaration
__declspec(vector(clauses)) function declaration

Clauses:
vectorlength(n) Vector Length
linear(list : step) scalar list variables are incremented by step;
uniform(/ist) (same) values are broadcast to all iterations
[no]mask generate a masked vector version

TxRCC

11

SIMD and Threads

* Cilk’s “los tres amigos”
— cilk_for
— cilk_spawn
— cilk_sync
* Cilk loops are SIMDizes, and invoke multiple
threads.

* Functions use SIMD form in CilkPlus loops.

TxRCC

12

SIMD

Single Instruction Multiple Data (SIMD)

Evolution of SIMD Hardware

Data Registers

Instruction Set Overview, AVX
Intel Cilk Plus SIMD

Directive

Declaration

Examples
OpenMP SIMD

Directive

Declaration

SIMD loop
SIMD CilkPlus OpenMP SIMD mapping
Alignment & Elemental Functions
Alignment
Beyond Present Directives

TxRCC

13

OpenMP SIMD

* First appeared in OpenMP 4.0 2013

 Appears as
— SIMD
— SIMD do/for
— declare SIMD

o SIMD refinements in OpenMP 4.1, ~2015.

TxRCC

14

SIMD
 OMP Directive SIMDizes loop

Syntax (Fortran):
ISOMP SIMD [clause][,] clause] ...]
#pragma omp SIMD [clause][[,] clause] ...]
Clauses:
safelen(n) number (n) of interations in a SIMD chunk

linear(list : step) scalar list variables are incremented by step;
loop iterations incremented by (vector length)*step

aligned(/ist :n) uses aligned (by n bytes) move on listed variables

collapse(n), lastprivate(/ist), private(list), reduction(operator: list)

TxRCC .

SIMD + Worksharing Loop
 OMP Directive Workshares and SIMDizes loop

Syntax:

ISOMP DO SIMD [clausel[,] clause] ...]
#pragma omp SIMD [clause][[,] clause] ...]

Clauses:
any DO clause data sharing attributes, nowait, etc.
any SIMD clause

Creates SIMD loop which uses chunks containing increments
of the vector size.

Remaining iterations are distributed “consistently”.
No scheduling details are give.

TxRCC ;

SIMD Enabled Functions

 OMP Directive generates scalar and SIMD
version with:

Syntax (Fortran):
$OMP DECLARE SIMD(routine-name) [clause][,] clause]...]
Clauses:
aligned(/ist:n) uses aligned (by n bytes) moves on listed variables
[not]inbranch must always be called in conditional [or never in]

linear(list:step) scalar list variables are incremented by step;

loop iterations incremented by (vector length)*step
simdlen(n) vector length
uniform(/ist) listed variables have invariant value

TxRCC

17

SIMD

Single Instruction Multiple Data (SIMD)
Evolution of SIMD Hardware
Data Registers
Instruction Set Overview, AVX

Intel Cilk Plus SIMD
Directive
Declaration
Examples

OpenMP SIMD
Directive
Declaration
SIMD loop

SIMD CilkPlus OpenMP SIMD mapping

Alignment & Elemental Functions

Alignment

Beyond Present Directives

TxRCC

18

CilkPlus =2 OpenMP Mapping

CilkPlus OpenMP
« SIMD (on loop) « SIMD (on loop)

Reduction Reduction

Vector length Vector length
Linear (increment) Linear (increment)
Private, Lastprivate Private, Lastprivate

€.Jg (fortran)
'dir$ simd reduction(+:mysum) linear(j:1l) vectorlength (4)
do..; mysum=mysum+j; j=fun(); enddo

1Somp simd reduction (+:mysum) linear(j:1l) safelen (4)
do..; mysum=mysum+j,; Jj=fun(),; enddo

TxRCC :

CilkPlus OpenMP SIMD Differences

CilkPlus OpenMP
« SIMD (on loop) « SIMD (on loop)

— firstprivate — aligned(var_list,bsize)
— vectorlengthfor — collapse

— [no]vectremainder
— [no]assert

— schedule(kind, chunk)

« #pragma cilk grainsize

TxRCC 2

CilkPlus Enable OMP Declare Differences

CilkPlus OpenMP

« vector clauses « declare simd
— vectorlength simdlen
linear linear

uniform uniform

[no]mask inbranch/notinbranch

processor(cpuid) aligned
vectorlengthfor

TxRCC .

Alignment

 Memory Alignment
— Allocation alignment

« C/C++

— dynamic: memalloc routines

— static: __declspec(align(64)) declaration
« Fortran

— dynamic: !dir$ attributes align: 64 :: var

— static: Idir$ attributes align: 64 :: var

— compiler: -align array64byte

TxRCC

22

Alignment (CilkPlus)

 Memory Alignment

— Access Description
« C/C++

— loop: #pragma vector aligned (all variables)

— Cilk_for vars: _assume_aligned(var,size)

— pointers attribute: __ attribute__ ((align_value (size)))
* Fortran
— dynamic: !dir$ attributes align: 64 :: var (allocatable var)

— static: Idir$ attributes align: 64 :: var
— compiler: -align array64byte

(stack var)

TxRCC

23

Alignment (OpenMP)

 Memory Alignment
— No API functions, no separate construct
— Declaration SIMD / SIMD have aligned clauses

TxRCC

24

Prefetch

 Prefetch distance can be via
compiler options and pragmas

#pragma prefetch var:hint:distance
* inner loops

* may be important to turn off prefetch
 available for Fortran

TxRCC

25

What do developers need to control at
the directive level?

» Caches: locality of data

(not available with OMP)
» Rearranging data: characterizing data structure (kokkos)

« Striding: characterized data structure,

TxRCC

26

SIMD

Single Instruction Multiple Data (SIMD)
Evolution of SIMD Hardware
Data Registers
Instruction Set Overview, AVX

Intel Cilk Plus SIMD
Directive
Declaration

Examples
OpenMP SIMD
Directive
Declaration
SIMD loop
Alignment
Beyond Present Directives

TxRCC

27

Vector Compiler Options

« Compiler will look for vectorization opportunities at
optimization
— 02 level.
» Use architecture option:
—x<simd_instr_set> to ensure latest vectorization
hardware/instructions set is used.

« Confirm with vector report:
— vec-report=<n>, n="verboseness”

* To get assembly code, myprog.s:
- S

» Rough Vectorization estimate: run w./w.o. vectorization
-n0-VecC

TxRCC &

Vector Compiler Options (cont.)

* Alignment options here.
* Inlining here.

TxRCC

AS

Vec. Programming
L—Alignment

Alignment

« Alignment of data and data structures can affect
performance. For AVX, alignment to 32byte
boundaries (4 Double Precision words) allows a single
reference to a cache line for moving 4DP words into
the registers (SIMD support). For MIC, alignment is
64 bytes.

« Compilers are great at detecting alignment and
peeling off a few iterations before working on a
sustained alignment within a loop body.

(Aligned data can use the more efficient movdqa instruction, rather
than the less efficient movdqu instruction.)

TxRCC &

Vec. Programming

L—Alignment .
Alignment
4 Load 4 DP Words 2
Q
/9]
32-byte 2 Load 4 DP Words [Ws)
Aligned ‘ , N Load 4 DP Words [l
A A I A

[\ [\ o) [\ Single Cache access

T DN 1T T T 11171 for 4 DP Words

Cache Line O Cache Line 1 Cache Line 2 Cache Line 3

4 Load 4 DP Words [l

| -

[0)

Non- =
Aligned 4 Load 4 DP Words [We))
)

‘ ‘ | pm—< | 0ad 4 DP Words [l

A A A A A A A
| | 1 1 1 | 1 1 1

‘ Across Cache Line
om0 B0 amaammeesmlmmmm| access for 4 DP Words

Cache Line O Cache Line 1 Cache Line 2 Cache Line 3 Cache Line 4

TxRCC :

Compiler Directives
L—Alignment

Vector Align

e Unaligned accesses are slower.
— Non-sequential across “bus”.
— Cross cache line boundary.

e Hpragma vector aligned or !DECS vector aligned

for(i=0; i<loops; i++)
Alignment can be forced

for(j=0;j<N-i;j++) a[jl=b[jl+c[j];

C: memalign(XXbyte,size)

FO0: Use compiler option
-align arrayXXbyte

TxRCC

KV

Vec. Programming
L—Inlining

Inlining

« Functions within a loop prevent vectorization.
— Inlining can often overcome this problem.

e.g.

file main.c file funs.c

double do_r2(double x, double y, double xp, double yp){
double r2;

for(i=0; i<nx; i++){
X =Xx0 +i*h;
sum = sum + do_r2(x,y, Xp,yp);

r2 = (x-xp)*(x-xp) + (y-yp)*(y-yp);
return r2;

}

» Since the call and function are in different files, inlining and
vectorization don’t occur. Use interprocedural optimization option
(-ipo) to inline & vectorize.

« If call and function are within the same unit (file), inlining and
vectorization are performed at —O2 optimization and higher.

TxRCC s

Vec. Programming
L—Inlining

Inlining

file main.c file funs.c

for(i=0; i<nx; i++){ double do_r2(double x, double y, double xp, double yp){
X = x0 +i*h; double r2;
sum = sum + do_r2(xy, Xp,yp); r2 = (x-xp)*(x-xp) + (y-yp)*(y-yp);
} return r2;

}

Inlining Vectorization

not inlined not vectorized
inlined not vectorized
inlined vectorized

TxRCC

34

e Questions
 Discussion

SIMD END

TxRCC

35

some Slides from 2012 Tutorial
(kfm)

TxRCC

36

SIMD
L_Hardware

L ectors ° °
’ SIMD Hardware (for Vectorization)
SAXPY Operation

Registers

Cache

Techfuels.com
T A

’a vl,v2,v3,..vyn x1,x2,x3,..Xn
z1,722,23,..2n

e Optimal Vectorization requires concerns beyond the SIMD Unit!
— Operations: Requires elemental (independent) operations (SIMD operations)
— Registers: Alignment of data on 64, 128, or 256 bit boundaries might be important
— Cache: Access to elements in caches is fast, access from memory is much slower
Memory: Store vector elements sequentially for fastest aggregate retrieval

Taoe o

SIMD

~Hardware SIMD Processing -- Vectorization

L Vectors

e Vectorization, or SIMD* processing, allows a
simultaneous, independent instruction on multiple data
operands with a single instruction. (Loops over array
elements often provide a constant stream of data.)

Note: Streams provide
Vectors of length 2-16
for execution in the SIMD
unit.

(S
©
(J]
|
e
2]

*SIMD= Single Instruction Multiple Data

TxRCC s

Vectorization
L—Example

L Add in Hardware Vector Add -- AVX

vmovupd ""(_\
® 8 88—

vmovupd
EEEE
vaddpd | i |
- ni
L LT]]
vmovupd «ess—4

e Only vector code will load multiple sets of
data into registers simultaneously.

e Non-aligned sets do consume more
Clock Periods (CPs).

L1 Data Cache

Cache Lin e 128A

Assembly
Instr. Instructions

I Cache Line

= == s 464-bit DP FP
MMM 1)56-bit Register

TxRCC

39

Vectorization
L_Example

L KNC Vectors VQCtorization (on KNC)

void mult (double *a, double *b, double*c, int n) {
for(int 1=0; i<n; i++) af[i]l=b[i]+c[i]; +

subroutine mult(a, b, ¢, n); real*8 :: a(n),b(n),c(n)
do i=1l,n; a(i)=b(i)+c(i); enddo
end subroutine

Scalar Instructions Vector Instruction
8 instructions, 8 element pairs 1 instruction, 8 element pairs

b0 b1 b2 b3 b4 b5 b6 b7 c0 c1 c2 c3 c4 c5 c6 c7 b0 b1 b2 b3 b4 bS5 b6 b7

add <J ‘ vaddpd J
£

add | <—

add

o7 .

c0 c1 c2 c3 c4 ¢c5 c6 c7

v v v I

A

Compiler Directives

Compiler Directives:
Hints and Coercion

TxRCC

41

